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Abstract—We suggest further development of the principle of conservation for problems with
moving boundaries. Using the problem of phase transitions in binary compounds as an example,
we demonstrate a technique for constructing divergence and nondivergence finite difference
schemes guaranteeing that the energy and mass conservation laws hold in the discrete model.
In a class of front tracking methods, we prove the equivalence of the approach based on the use
of moving grids with that based on a dynamic change of variables which permits one to solve
the problem on a fixed grid.
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1. INTRODUCTION

Studying physical processes by a finite difference method implies replacing a continuous medium
by a discrete counterpart.This replacement can be performed in various ways, and for the original
differential problem, there exists an unlimited variety of finite difference schemes. In this connection,
one faces the problem of choosing a scheme with desired properties. The consistency, stability, and
convergence conditions play a key role when assessing the performance of a numerical algorithm.
These fundamental notions are of asymptotic nature. For sufficiently smooth solutions, these
conditions involve the assumption that the grid increments tend to zero. For linear problems,
the consistency and stability of a scheme imply its convergence.

However, numerical analysis of real-world problems often necessitates constructing finite dif-
ference schemes for nonlinear differential equations with discontinuous coefficients and solutions.
As a rule, convergence analysis in such cases is restricted to making two (at best, three) compu-
tations on condensing grids, which requires an essential computational expenditures in multidi-
mensional nonstationary problems. Moreover, the results of such computations do not in general
provide reliable information on how well the discrete model describes the process to be studied [1, 2].
When numerically solving specific physical problems, an assessment of the performance of finite
difference algorithms requires using additional considerations as well as the usual approximation,
convergence, and stability requirements. One such performance criterion that should be used in
the choice of a finite difference algorithm is given by the scheme principle of conservation, which
follows from the physical meaning of the original problem.

The original physical-mathematical statement of the problem is the set of conservation laws
determining the process in question. For example, in gas dynamics, these are the mass, momen-
tum, and total energy conservation laws; in magnetic gas dynamics, they are supplemented with
the magnetic flux conservation law. The principle of conservation says that the finite difference
counterparts of these conservation laws should hold in a discrete model of a medium. The efficiency
of the principle of conservation was illustrated for the first time by Tikhonov and Samarskii [2] who
showed that conservation is a necessary condition for convergence in the case of a stationary heat
equation with a discontinuous coefficient.

The subsequent development of the principle of conservation has led to the notion of total con-
servation [3, p. 360]. Totally conservative finite difference schemes form a subclass of the class of
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conservative schemes. Not only the conservation laws themselves but also some of their corollaries
hold in such schemes, including the first principle of thermodynamics in gas dynamics, balance for
individual types of energy, and so on. The principles of conservation and total conservation are
of physical origin and ensure that a finite difference model inherits the properties of the original
physical-mathematical model. If these principles fail, then the corresponding discrete model be-
comes physically meaningless, and the solution of the finite difference problem differs quantitatively
and sometimes even qualitatively from the true solution.

From the formal viewpoint, the total conservation property amounts to the following.
The differential equations describing the original physical-mathematical model can be represented in
various forms, which can be reduced to each other by equivalence transformations. For example,
in gas dynamics, the divergence form of the energy equation expresses the conservation law for the
total energy, and the nondivergence forms following from it express the first principle of thermody-
namics and the balance of individual forms of energy. Total conservation means that the various
representations of conservation laws in the discrete medium can be reduced to each other with the
use of equivalence transformations similar to those in the differential case.

The present paper deals with some new aspects in the application of the principle of conservation
to the solution of evolution problems in domains with moving boundaries for the case in which the
law of their motion is not given in advance and should be determined in the course of the solution of
the problem. For clarity, our exposition is based on an example of a problem on the crystallization
of a solution whose phase transition temperature depends on the composition of the liquid and
solid phases; this problem is known as the thermodiffusion Stefan problem. Although the principle
of conservation has long become commonplace in the theory and practice of the construction and
application of finite difference algorithms in numerical gas dynamics, the necessity to ensure that
the conservation laws are satisfied in discrete models when numerically solving problems with
phase transitions has only been recognized quite recently in connection with the analysis of phase
transitions in multicomponent media [4]; moreover publications ignoring this principle [5–8] still
continue to appear.

Of the broad variety of algorithms presently used for the numerical solution of phase transition
problems (e.g., see [9, p. 163; 10, p. 343]), the present paper only considers methods in which the
phase interface is explicitly singled out. They play an important role in the numerical analysis
of phase transitions in multicomponent problems, where the temperature and composition on the
solid–liquid interface is determined by the phase diagram of the system, the mass conservation law
for each component, and the internal energy balance. The possibilities of using shock-capturing
algorithms, which employ coefficient smoothing [11; 12, p. 274], or enthalpy methods [9, p. 217] for
such problems are quite restricted.

In methods where the phase interface is singled out explicitly, the moving boundary is determined
by the position of grid points fixed to it. This is achieved either by the use of moving grids
coordinated in the original variables with the shape of the crystallization front [5, 6, 13–15] or by
a dynamical change of variables [4; 10, p. 343; 16–20] that is chosen in such a way that the design
domain in the new coordinates is regular and has fixed boundaries coinciding with coordinate lines
(the front rectification method) [21]. The approximation is carried out for the original differential
equations in the first case and for the equations obtained by the change of variables in the second
case. Both approaches have their own advantages and disadvantages; the solution of the problem in
the original coordinate system appears to be more “physical” than the use of a special coordinate
system depending on the solution. The two approaches are equivalent as long as the statement of
the differential problem is concerned.

In the present paper, for the thermodiffusion Stefan problem on a moving and a fixed grid, we
construct divergence and nondivergence finite difference schemes ensuring the internal energy and
mass balance. Just as the differential equations, the finite difference equations obtained in the
framework of these two approaches can be reduced to each other by a change of variables.

2. THERMODIFFUSION STEFAN PROBLEM

Consider the problem on the crystallization of the binary compound AxB1−x from the solution
of the component A in the substance B, where x is the molar fraction. Suppose that the phase
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transition occurs in a quasiequilibrium mode [22, p. 30]. This implies that the composition of
both phases on the liquid–solid interface satisfies the phase diagram of the system: the liquid
phase is a saturated solution with concentration C l = Fl(T ) of the solute given by the liquidus
line of the phase diagram, and the solid phase has the composition that is in equilibrium with
the liquid phase and is given by the solidus line Cs = Fs(C l, T ); here C l and Cs are the volume
concentrations of the component A on the interface in the liquid and solid phases, respectively, and
T is temperature. Here, unlike the classical Stefan problem, the phase transition temperature is
not constant and depends on the liquid phase composition C l and the solid phase composition Cs

on the interface, C l �= Cs.
In the one-dimensional approximation, the distribution of temperature T and volume concen-

tration C in the system is described by the system of equations

cs
p

∂T

∂t
= κ

s ∂2T

∂x2
,

∂C

∂t
= Ds ∂2C

∂x2
, 0 ≤ x < ξ(t), (1)

cl
p

∂T

∂t
= κ

l ∂
2T

∂x2
,

∂C

∂t
= Dl ∂

2C

∂x2
, ξ(t) ≤ x < L. (2)

Here x is the Cartesian coordinate, t is time, ξ(t) is the interface position, and L is the domain
length. The subdomain 0 ≤ x < ξ(t) corresponds to the solid phase, and ξ(t) < x ≤ L to
the liquid phase; cl

p is the specific heat capacity, κ
s = ks/�, and κ

l = kl/�; ks and kl are the
thermal conductivities, and Ds and Dl are the diffusion coefficient in the solid and liquid phases,
respectively; � is the density. We assume that the liquid and solid phases have the same density.

The phase equilibrium conditions

C l = Fl(T ), Cs = Fs(C l, T ), (3)

the Stefan condition

κ
s ∂T

∂x

∣
∣
∣
∣
x=ξ(t)−

− κ
l ∂T

∂x

∣
∣
∣
∣
x=ξ(t)+

= λ
ξ

dt
, (4)

and the mass conservation law

Ds ∂C

∂x

∣
∣
∣
∣
x=ξ(t)−

− Dl ∂C

∂x

∣
∣
∣
∣
x=ξ(t)+

= −(Cs − C l)
dξ

dt
(5)

hold on the interface; here λ is the latent heat of melting, and dξ/dt is the front velocity.
On the boundary of the domain, we pose the mass and heat no-flux conditions

κ
s ∂T

∂x
= 0, x = 0, κ

l ∂T

∂x
= 0, x = L, (6)

Ds ∂Cs

∂x
= 0, x = 0, Dl ∂C l

∂x
= 0, x = L. (7)

We start the construction of finite difference schemes for the thermodiffusion Stefan problem by
approximating Eqs. (1) and (2) represented in a coordinate system in which the interface is im-
movable.

3. FRONT RECTIFICATION METHOD

3.1. Change of Variables

In problem (1)–(7), we make a change of the independent variables (x, t) such that the position
of the phase interface in the new coordinate system (y, t) is fixed and coincides with the point
y = 1, and the boundary points x = 0 and x = L of the domain becomes the points y = 0 and
y = 2, respectively [21]. The old coordinates (x, t) and the new coordinates (y, t) is related by the
formulas

t = t, x = ϕ(y, t) =
{

yξ(t) for y ∈ [0, 1] in the solid phase,
ξ(t) + (L − ξ(t))(y − 1) for y ∈ [1, 2] in the liquid phase.

(8)
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The Jacobian J of this transformation is given by J =
(y, t)
(x, t)

=
1
l
, where l = l(t) is the length

of the corresponding zone in the original coordinate system; l = ls = ξ(t) in the solid phase, and
l = ll = L − ξ(t) in the liquid phase. In the new variables, the domains 0 ≤ y < 1 and 1 < y ≤ 2
are filled with the solid and liquid phases, respectively.

Let us rewrite problem (1)–(7) in the variables (y, t). One can readily see that

∂

∂x
=

1
l

∂

∂y
,

∂

∂t
=

∂

∂t
− ϕt

l

∂

∂y
, (9)

ϕt =

⎧

⎪⎨

⎪⎩

y
dξ

dt
for y ∈ [0, 1],

(2 − y)
dξ

dt
for y ∈ [1, 2].

(10)

The function ϕt is continuous at the point y = 1, and ϕt(1, t) = dξ/dt.
Let us substitute the expressions (9) and (10) into the equation for the temperature,

c

[
∂T

∂t
− ϕt

l

∂T

∂y

]

=
1
l

∂

∂y

(
κ

l

∂T

∂y

)

, y ∈ (0, 1) ∪ (1, 2). (11)

Here c, l, and κ are piecewise constant functions taking the values cs
p, ls, and κ

s for y ∈ [0, 1) and
cl

p, ll, and κ
l for y ∈ (1, 2].

At the point y = 1, we pose the Stefan condition
(

κ

l

∂T

∂y

)∣
∣
∣
∣
y=1−0

−
(

κ

l

∂T

∂y

)∣
∣
∣
∣
y=1+0

= λ
dξ

dt
. (12)

We multiply Eq. (11) by the Jacobian of the transformation and write out the resulting equation
in the divergence form

c

[
∂

∂t
(lT ) − ∂

∂y
(ϕtT )

]

=
∂

∂y

(
κ

l

∂T

∂y

)

, y ∈ (0, 1) ∪ (1, 2). (13)

When passing from Eq. (11) to (13), we have used the relation ϕty = dl/dt.
The equations for the concentration in the variables (y, t) in nondivergence and divergence forms

read

l
∂C

∂t
− ϕt

∂C

∂y
=

∂

∂y

(
D

l

∂C

∂y

)

, (14)

∂

∂t
(lC) − ∂

∂y
(ϕtC) =

∂
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(
D

l

∂C

∂y

)

, y ∈ (0, 1) ∪ (1, 2), (15)

respectively. On the interface, we have
(

D

l

∂C

∂y

)∣
∣
∣
∣
y=1−0

−
(

D

l

∂C

∂y

)∣
∣
∣
∣
y=1+0

= −(Cs − C l)
dξ

dt
. (16)

Here D = Ds for y ∈ [0, 1) and D = Dl for y ∈ (1, 2].
To construct a finite difference algorithm, one can use both the divergence and nondiver-

gence forms of the heat and mass balance equations; however, to obtain conservative schemes
by the integro-interpolation method, it is convenient to use the equations represented in divergence
form [23, p. 108].
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3.2. Finite Difference Schemes and Grid Functions

In the domain Dy = [0, 2], we introduce the finite difference grid ωy = {yi, 0 ≤ i ≤ N,
y0 = 0, yN = 2}; then hi+1/2 = yi+1 − yi is the grid increment. Let the interface (the point y = 1)
coincide with one of the grid points; we denote it by yi∗ . Along with the nodes yi, we introduce the
flow points yi+1/2 = (yi + yi+1)/2, i = 0, . . . , N − 1, and the grid increments �

y
i = yi+1/2 − yi−1/2 =

(hy
i+1/2 + hy

i−1/2)/2. The finite difference grid in time is denoted by ωt = {t0 = 0, tj+1 = tj + τ,

j = 0, 1, . . .}, where τ is the time grid increment.
In the space of the original variables, where the phase interface is moving, the nodes of the

grid ωy determine the points ωx = {xi(t) = ϕ(yi, t), 0 ≤ i ≤ N, x0 = 0, xN = L}. The node
xi∗(t) = ϕ(yi∗ , t) = ξ(t) coincides with the phase interface,

hx
i+1/2(t) = xi+1(t) − xi(t), �

x
i (t) = (hx

i+1/2(t) + hx
i−1/2(t))/2,

ĥx
i+1/2 = xi+1(t + τ) − xi(t + τ), �̂

x
i = (hx

i+1/2(t + τ) + hx
i−1/2(t + τ))/2.

The temperature and concentration grid functions are associated with grid nodes. Let f = T,C;
then f(xi(t), tj) = f(yi, tj) = fi. We define these functions on the intervals between the nodes as
f(x, tj) = f(xi(t), tj) for x ∈ (xi−1/2, xi+1/2), i �= i∗. On the interface, the temperature Ti∗−0 = Ti∗+0

is continuous, and the concentration is discontinuous; therefore, two values of it, Ci∗−0 = Cs and
Ci∗+0 = C l, are defined at the point i∗; Cs and C l are the equilibrium concentrations satisfying
the phase diagram of the system; C(x, tj) = Ci∗−0 if x ∈ (xi∗−1/2, xi∗), and C(x, tj) = Ci∗+0 if
x ∈ (xi∗ , xi∗+1/2) (Fig. 1). To unify the notation, we also use Ci−0 and Ci+0, Ci−0 = Ci+0 = Ci,
at the regular points (i �= i∗). The zone length, the specific heat capacity, the thermal diffusivity,
and the diffusion coefficients refer to half-integer grid points. These functions are constant to the
left and right of the point i∗ and take the values corresponding to the solid and liquid phases,
respectively.

We denote the finite difference time derivative by ft,i = ft = (f̂i − fi)/τ , where

f̂i = f(xi(t + τ), tj + τ) = f(yi, tj + τ).

Let σα be a numerical parameter, 0 ≤ σα ≤ 1. By f (σα) = σαf̂ + (1 − σα)f we denote a linear
combination of the values of a grid function on the upper and lower time layers; the passage from
the weight σα to the weight σβ is given by the formula f (σβ) = f (σα) + (σβ − σα)τft [23, p. 17].

Let us define finite difference derivative operators with respect to space. On the fixed grid,
we have

fy = fy(i) =
f(yi+1, tj) − f(yi, tj)

yi+1 − yi

, fȳ(i) = fy(i − 1),

f̂y = f̂y(i) =
f(yi+1, tj + τ) − f(yi, tj + τ)

yi+1 − yi

, f̂ȳ(i) = f̂y(i − 1).

Fig. 1. Finite difference scheme. Grid functions.
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In addition, let

fỹ =
f(yi) − f(yi−1/2)

hy
i−1/2/2

, fỹ =
f(yi+1/2) − f(yi)

hy
i+1/2/2

.

If f(yi±1/2) = (f(yi±1) + f(yi))/2, then fỹ = fy and fỹ = fy.
On the moving grid, we have

fx = fx(i) =
f(xi+1(tj), tj) − f(xi(tj), tj)

xi+1(tj) − xi(tj)
, fx̄(i) = fx(i − 1),

f̂x = f̂x(i) =
f(xi+1(tj + τ), tj + τ) − f(xi(tj + τ), tj + τ)

xi+1(tj + τ) − xi(tj + τ)
, f̂x̄(i) = f̂x(i − 1).

In what follows, we need finite difference differentiation formulas for the product,

(fg)t = g(σα)ft + f (1−σα)gt, (fg)y = gfy + fi+1gy.

3.3. Construction of a Finite Difference Scheme on a Fixed Grid

Let us integrate Eq. (13) over the grid cell [yi−1/2, yi+1/2] × [tj, tj + τ ],

tj+τ∫

tj

yi+1/2∫

yi−1/2

[

c
∂

∂t
(lT ) − c

∂

∂y
(ϕtT )

]

dy dt =

tj+τ∫

tj

yi+1/2∫

yi−1/2

∂

∂y

(
κ

l

∂T

∂y

)

dy dt. (17)

We substitute the grid functions into this relation and successively compute the integrals occurring
in it. We obtain

I1 =

tj+τ∫

tj

dt

[ yi∫

yi−1/2

ci−1/2

∂

∂t
(lT ) dy +

yi+1/2∫

yi

ci+1/2

∂

∂t
(lT ) dy

]

=
hy

i−1/2

2
ci−1/2[ ̂(li−1/2Ti) − (li−1/2Ti)] +

hy
i+1/2

2
ci+1/2[ ̂(li+1/2Ti) − (li+1/2Ti)]. (18)

If the integration interval [yi−1/2, yi+1/2] does not contain the phase interface (i �= i∗), then ci−1/2 =
ci+1/2, li−1/2 = li+1/2, and the computation of the integral does not require splitting the integration
domains into segments lying to the left and right from the point yi; however, the representation (18)
provides a unified (independent of the node index) form of the finite difference approximation to
the time derivative.

We split the integral of the second term on the left-hand side in relation (17) into two integrals
and compute it with regard of the relations (ϕtT )(yi − 0) = (ϕtT )(yi + 0) and ϕt(yi∗) = dξ/dt,

I2 =

tj+τ∫

tj

dt

[ yi∫

yi−1/2

ci−1/2

∂

∂y
(ϕtT ) dy +

yi+1/2∫

yi

ci+1/2

∂

∂y
(ϕtT ) dy

]

=

tj+τ∫

tj

[ci−1/2[(ϕtT )(yi) − (ϕtT )(yi−1/2)] + ci+1/2[(ϕtT )(yi+1/2) − (ϕtT )(yi)]] dt

≈ τ [(ci−1/2 − ci+1/2)ξtT
(σ1)
i∗ + ci+1/2(ϕtT

(σ1))(yi+1/2) − ci−1/2(ϕtT
(σ1))(yi−1/2)]. (19)

Here ξt = (ξ̂ − ξ)/τ and 0 ≤ σ1 ≤ 1; we obtain an explicit approximation to the convective term
for σ1 = 0 and a purely implicit approximation for σ1 = 1. Note that

I2 = τ [ci+1/2(ϕtT
(σ1))(yi+1/2) − ci−1/2(ϕtT

(σ1))(yi−1/2)]
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at all grid nodes except for i = i∗. An additional term related to a jump in the thermodynamic
parameters on the phase interface occurs only for i = i∗. The product (ϕtT ) at the half-integer
points can be computed by the formula (ϕtT )(yi±1/2) = ϕt(yi±1/2)(Ti + Ti±1)/2.

Let us proceed to the computation of the integral occurring on the right-hand side in rela-
tion (17),

I3 =

tj+τ∫

tj

dt

[ yi∫

yi−1/2

∂

∂y

(
κ

l

∂T

∂y

)

dy +

yi+1/2∫

yi

∂

∂y

(
κ

l

∂T

∂y

)

dy

]

=

tj+τ∫

tj

dt

[

κi−1/2

li−1/2

∂T

∂y

∣
∣
∣
∣
yi−0

− κi−1/2

li−1/2

∂T

∂y

∣
∣
∣
∣
yi−1/2

+
κi+1/2

li+1/2

∂T

∂y

∣
∣
∣
∣
yi+1/2

− κi+1/2

li+1/2

∂T

∂y

∣
∣
∣
∣
yi+0

]

. (20)

The heat flux is continuous at a regular point and experiences a jump, whose magnitude can be
found from the Stefan condition (12), at the interface; therefore, we can write out an approximate
expression for the integral I3 in the form

I3 ≈ τ
dξ

dt
λδii∗ + τ

[

κi+1/2

(
Ty

li+1/2

)(σ2)

− κi−1/2

(
Tȳ

li−1/2

)(σ2)
]

, (21)

where δii∗ is the Kronecker delta.
By replacing the integrals in (17) with their approximations (18), (19), and (21), we obtain

a divergence finite difference scheme with weights σ1 and σ2 for Eqs. (13) and (12) multiplied by
the cell area. After the division by τ , it acquires the form

0.5hy
i−1/2ci−1/2(li−1/2Ti)t + 0.5hy

i+1/2ci+1/2(li+1/2Ti)t

−
[

ci+1/2(ϕtT
(σ1))(yi+1/2) − ci−1/2(ϕtT

(σ1))(yi−1/2)
]

=

[

κi+1/2

(
Ty

li+1/2

)(σ2)

− κi−1/2

(
Tȳ

li−1/2

)(σ2)
]

+ ξt

[

λδii∗ + (ci−1/2 − ci+1/2)T
(σ1)
i∗

]

. (22)

At a regular point, relation (22) is a scheme with central differences for an equation of convection–
diffusion type. If i = i∗, then it is supplemented with a term due to a jump in the thermodynamic
parameters on the interface and heat release (or absorption) during the phase transition.

To approximate the boundary conditions at the points y0 and yN , one should integrate Eq. (13)
with regard of (6) over the intervals [y0, y1/2] and [yN−1/2, yN ], respectively. As a result, we obtain

0.5hy
1/2c1/2(l1/2T0)t − c1/2(ϕtT

(σ1))(y1/2) = κ1/2(Ty/l1/2)(σ2),

0.5hy
N−1/2cN−1/2(lN−1/2TN)t + cN−1/2(ϕtT

(σ1))(yN−1/2) = −κN−1/2(Tȳ/lN−1/2)(σ2). (23)

The finite difference problem (22), (23) is nonlinear. Here the unknowns are the temperature T̂i

on the upper time layer and the interface velocity ξt. The lengths of the solid and liquid zones and
ϕt can obviously be expressed via ξt. (For the unknown function one can take the length of some
zone as well, and the front velocity can be computed on the basis of the change in the zone length
in one time step.)

To construct a finite difference approximation to the diffusion equation, we integrate equa-
tion (15) over the cell [yi−1/2, yi+1/2] × [tj, tj + τ ],

tj+τ∫

tj

yi+1/2∫

yi−1/2

[
∂

∂t
(lC) − ∂

∂y
(ϕtC)

]

dy dt =

tj+τ∫

tj

yi+1/2∫

yi−1/2

∂

∂y

(
D

l

∂C

∂y

)

dy dt.
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Just as above, we split the integral with respect to the space variable into two integrals. If the inte-
gration interval contains the interface, then, in addition to l and D, the concentration
Ci∗−0 = Cs, Ci∗+0 = C l, has a discontinuity at the point i∗. At the regular points, we have
Ci−0 = Ci+0. After simple transformations similar to (18)–(21), we obtain

0.5hy
i−1/2[ ̂(li−1/2Ci−0) − (li−1/2Ci−0)] + 0.5hy

i+1/2[ ̂(li+1/2Ci+0) − (li+1/2Ci+0)]

− τ [(Cs,(σ3) − C l,(σ3))ξtδii∗ + (ϕtC
(σ3))(yi+1/2) − (ϕtC

(σ3))(yi−1/2)]

= τ [Di+1/2(Cy/li+1/2)(σ4) − Di−1/2(Cȳ/li−1/2)(σ4)] − τ(Cs,(σ4) − C l,(σ4))ξtδii∗ . (24)

In the last integral on the right-hand side, we pass from the weight σ4 to the weight σ3 and collect
similar terms containing ξt. After the division by τ , we rewrite Eq. (24) as follows:

0.5hy
i−1/2[ ̂(li−1/2Ci−0) − (li−1/2Ci−0)]/τ + 0.5hy

i+1/2[ ̂(li+1/2Ci+0) − (li+1/2Ci+0)]/τ

− (ϕtC
(σ3))(yi+1/2) − (ϕtC

(σ3))(yi−1/2)

= Di+1/2(Cy/li+1/2)(σ4) − Di−1/2(Cȳ/li−1/2)(σ4) + τ(σ3 − σ4)(Cs
t − C l

t)ξtδii∗ . (25)

If σ3 = σ4, then the finite difference equation (25) is a natural approximation to the divergence
form of the mass conservation law and is independent of the grid point number. If σ3 �= σ4, then
the conservative finite difference scheme contains the source/drain τ(σ3 − σ4)(Cs

t − C l
t)ξt localized

at the point i = i∗ and associated with a time-dependent jump in the concentration on the interface.
In what follows, we consider the case in which σ3 = σ4.

We obtain an approximation to the boundary conditions (7) if we equate the terms with indices
0−1/2 and N +1/2 in (25) for i = 0 and i = N , respectively, with zero. This can readily be verified
by integrating Eq. (15) over the cells adjacent to the boundary with regard of conditions (7).

3.4. Approximation to the Heat Transfer Equation in Nondivergence Form

The heat transfer and solute transport equations admit the divergence form (13), (15) and the
nondivergence form (11), (14). In the construction of the finite difference schemes (22) and (25),
we have used the divergence form of the corresponding equations. By analogy with the differential
case, let us transform the constructed schemes into nondivergence form. We start from a grid
equation for the temperature. Let us rewrite the scheme (22) in the form

0.5hy
i−1/2ci−1/2(li−1/2Ti)t + 0.5hy

i+1/2ci+1/2(li+1/2Ti)t

− [0.5hy
i−1/2ci−1/2(ϕtT

(σ1))ỹ + 0.5hy
i+1/2ci+1/2(ϕtT

(σ1))ỹ]

= [κi+1/2(Ty/li+1/2)(σ2) − κi−1/2(Tȳ/li−1/2)(σ2)] + ξtλδii∗ (26)

and use the finite difference differentiation formulas for the product,

0.5hy
i−1/2ci−1/2[l

(σ0)
i−1/2Tt,i + T

(1−σ0)
i lt,i−1/2] + 0.5hy

i+1/2ci+1/2[l
(σ0)
i+1/2Tt,i + T

(1−σ0)
i lt,i+1/2]

− [0.5hy
i−1/2ci−1/2(ϕtỹT

(σ1)
i + ϕt,i−1/2T

(σ1)

ỹ
) + 0.5hy

i+1/2ci+1/2(ϕtỹT
(σ1)
i + ϕt,i+1/2T

(σ1)
ỹ )]

= [κi+1/2(Ty/li+1/2)(σ2) − κi−1/2(Tȳ/li−1/2)(σ2)] + ξtλδii∗ . (27)

Note that hy
i−1/2lt,i−1/2/2 = (yi − yi−1/2)lt,i−1/2 = yilt,i−0 − yi−1/2lt,i−1/2 = hy

i−1/2ϕtỹ/2, and likewise,
hy

i+1/2lt,i+1/2/2 = hy
i+1/2ϕtỹ/2. We substitute these expressions into (27) and pass from the weight

1 − σ0 to the weight σ1. After matching like terms, Eq. (26) acquires the form

0.5hy
i−1/2ci−1/2l

(σ0)

i−1/2Tt,i + 0.5hy
i+1/2ci+1/2l

(σ0)

i+1/2Tt,i

− [0.5hy
i−1/2ci−1/2ϕt,i−1/2T

(σ1)
y + 0.5hy

i+1/2ci+1/2ϕt,i+1/2T
(σ1)
y ] + QT

i

= [κi+1/2(Ty/li+1/2)(σ2) − κi−1/2(Tȳ/li−1/2)(σ2)] + ξtλδii∗ , (28)

DIFFERENTIAL EQUATIONS Vol. 49 No. 7 2013



www.manaraa.com

CONSERVATIVE SCHEME FOR THE THERMODIFFUSION . . . 877

where
QT

i = (1 − σ0 − σ1)τTt,i[h
y
i−1/2ci−1/2ϕtỹ + chy

i+1/2ci+1/2ϕtỹ]/2.

Equation (28) is algebraically equivalent to (22) and hence provides the correct heat balance in the
discrete model as well.

By comparing Eq. (28) with (14), we find that, in addition to an approximation to the terms
occurring in the nondivergence differential equation, the finite difference equation contains the extra
term QT

i . It can be treated as a source that acts on each interval of the finite difference grid and
counterbalances the heat imbalance due to an uncoordinated approximation to various terms of
the differential equation in time. The relation QT

i = 0 holds for the coordinated choice of the time
weights such that σ0 + σ1 = 1.

The transformation of the finite difference scheme (25) to nondivergence form leads to the scheme

0.5hy
i−1/2l

(σ5)
i−1/2Ct,i−0 + 0.5hy

i+1/2l
(σ5)
i+1/2Ct,i+0

− [0.5hy
i−1/2ϕt,i−1/2C

(σ3)
y + 0.5hy

i+1/2ϕt,i+1/2C
(σ3)
y ] + QC

i

= [Di+1/2(Cy/li+1/2)(σ3) − Di−1/2(Cȳ/li−1/2)(σ3)] + ξt(C
(σ3)
i+0 − C

(σ3)
i−0 )δii∗ . (29)

Here
QC

i = (1 − σ3 − σ5)τ [hy
i−1/2ϕtỹCt,i−0 + hy

i+1/2ϕtỹCt,i+0]/2

is a mass source (drain), whose occurrence, just as in the scheme (28), is due to the uncoordinated
choice of the time weights in various terms of the finite difference equation. We have thereby proved
the following assertion.

Assertion 1. The finite difference schemes (22) and (28) approximating the nondivergence and
divergence forms of the heat equation are algebraically equivalent.

A similar assertion holds for the finite difference schemes (25) and (29), which approximate the
nondivergence and divergence forms of the equation for the concentrations.

The conditions σ0 +σ1 = 1 and σ3 +σ5 = 1 single out the class of nondivergence finite difference
schemes that ensure the conservation laws to hold without any correction terms. How essential the
influence of the terms QT

i and QC
i is in the case where either σ0 + σ1 �= 1 or σ3 + σ5 �= 1 depends

on the solution properties such as the interface motion velocity, the medium parameters, the phase
diagram of the system, the finite difference grid, etc.

We also point out that the requirement that the divergence and nondivergence forms of the
finite difference problem be equivalent determines how the spatial derivatives are approximated. For

example, the frequently used representation of the term
∂ϕ

∂t

∂f

∂y
, f = T,C, in the form ϕt,i(fy+fȳ)/2

(e.g., see [10, p. 347; 24; 25]) does not satisfy this requirement and results in a failure of the
conservation laws in the system.

4. METHOD OF COMPUTATIONS ON THE MOVING GRID

4.1. Construction of the Finite Difference Scheme

Now let us use the integro-interpolation method to construct a finite difference approximation to
Eqs. (1) and (2) on the grid ωx×ωt. We integrate Eqs. (1) and (2) over the cell [xi−1/2(t), xi+1/2(t)]×
[tj , tj + τ ],

tj+τ∫

tj

xi+1/2(t)∫

xi−1/2(t)

c
∂

∂t
T dx dt =

tj+τ∫

tj

xi+1/2(t)∫

xi−1/2(t)

∂

∂x

(

κ

∂T

∂x

)

dx dt, (30)

and successively transform the integrals occurring on the left- and right-hand sides in relation (30).
We split each of them into two integrals over closed intervals [xi−1/2(t), xi(t)] and [xi(t), xi+1/2(t)].
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On the left-hand side, we use the differentiation formula for an integral with variable integration
limits. As a result, we obtain

Ix
1 =

tj+τ∫

tj

dt
d

dt

xi(t)∫

xi−1/2(t)

cT dx −
tj+τ∫

tj

dt

[

(cT )|xi−0

dxi

dt
− (cT )|xi−1/2

dxi−1/2

dt

]

+

tj+τ∫

tj

dt
d

dt

xi+1/2(t)∫

xi(t)

cT dx −
tj+τ∫

tj

dt

[

(cT )|xi+1/2

dxi+1/2

dt
− (cT )|xi+0

dxi

dt

]

. (31)

We substitute the values of the grid functions into relation (31) and write out an approximate
expression for Ix

1 in the form

0.5ci−1/2[ ̂(hx
i−1/2Ti) − (hx

i−1/2Ti)] + 0.5ci+1/2[ ̂(hx
i+1/2Ti) − (hx

i+1/2Ti)]

− τ [(cT (σ1))i+1/2xi+1/2,t − (cT (σ1))i−1/2xi−1/2,t] − τ [ci−1/2 − ci+1/2]T
(σ1)
i xi,t, (32)

where xi,t = (x̂i − xi)/τ . The last bracketed expression in (32) is only nonzero for i = i∗.
The approximation to the integral on the right-hand side in relation (30) is constructed just as

in (20); one should only use the fact that, in this case, the space grid increment depends on time,

Ix
2 � τ [xitλδii∗ + κi+1/2T

(σ2)
x − κi−1/2T

(σ2)
x̄ ]. (33)

By matching the expressions (32) and (33) obtained after the division by τ , we write out the finite
difference scheme on the moving grid as follows:

0.5[ci−1/2(hx
i−1/2Ti)t + ci+1/2(hx

i+1/2Ti)t] − [(cT (σ1))i+1/2xt,i+1/2 − (cT (σ1))i−1/2xt,i−1/2]

= [κi+1/2T
(σ2)
x − κi−1/2T

(σ2)
x̄ ] + ξt[λδii∗ + [ci−1/2 − ci+1/2]T

(σ1)
i ]. (34)

The integration of the equation for the concentration over the cell [xi−1/2, xi+1/2] × [tj, tj + τ ]
leads to the relation

0.5[(hx
i−1/2Ci−0)t + (hx

i+1/2Ci+0)t] − [C(σ3)
i+1/2xt,i+1/2 − C

(σ3)
i−1/2xt,i−1/2]

= [Di+1/2Cx
(σ3) − Di−1/2C

(σ3)
x̄ ]. (35)

The approximation at the points x0 and xN is constructed on the basis of integrals over the intervals
[0, x1/2] and [xN−1/2, xN ].

The finite difference equations (34) and (35) also admit nondivergence form, which can be
obtained just as in Subsection 3.4.

Assertion 2. The families of finite difference schemes (22) and (34) constructed by the front
rectification method and on a moving grid , respectively , are algebraically equivalent.

Proof. The grid relations (22) and (34) approximate integral relations that pass into each other
under the change of variables 3.1. One can readily see that, in the space of grid functions, the dis-
crete counterpart of 3.1 provides the same relationship between the finite difference equations (34),
(22) and (35), (25), respectively. Indeed,

hx
i+1/2 = xi+1(t) − xi(t) = ϕ(yi+1, t) − ϕ(yi, t) = (yi+1 − yi)li+1/2(t) = hy

i+1/2li+1/2(t),

̂hx
i+1/2 = hy

i+1/2li+1/2(t + τ), xt,i±1/2 = ϕt(yi±1/2, t). (36)

Let us substitute the expressions (36) into Eqs. (34) and (35) shifting the indices where necessary.
As a result, we obtain the schemes (22) and (25). Therefore, the families of finite difference schemes
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constructed with the use of the front rectification method and on a moving grid are algebraically
equivalent. This is the case for nondivergence schemes as well. Just as in the differential case, one
family can be reduced to another by a change of variables. The proof of Assertion 2 is complete.
A similar assertion holds for the finite difference schemes (25) and (35).

4.2. Conservation Laws in the Discrete Model

Equations (1) and (2) and the Stefan conditions (3) and (4) are a consequence of the conservation
law for the internal energy in a system with a phase transition. Let us show that the internal energy
conservation law holds as well in the discrete model where the heat transfer is described by Eq. (34).

Assertion 3. The finite difference counterpart of the internal energy conservation law holds for
the finite difference scheme (34).

Proof. Suppose that the phase transition occurs at a constant temperature Ti∗ = const and
introduce the specific internal energy as follows:

E = Es = csT, T < Ti∗ in the solid phase,

E = E l = csTi∗ + cl(T − Ti∗) + λ, T > Ti∗ in the liquid phase.
(37)

First, we write out the internal energy balance on the interval [xi∗−1/2, xi∗+1/2], which contains the
interface. From (37), we have ci−1/2Ti∗ = csTi∗ = Ei∗−0 and ci+1/2Ti∗ = clTi∗ = Ei∗+0+(cl−cs)Ti∗−λ.
We use these relations in Eq. (34) and make simple transformations; then we obtain the equation

0.5[Eshx
i∗−1/2 + E lhx

i∗+1/2]t = [E l,(σ1)

i∗+1/2xt,i∗+1/2 − Es,(σ1)

i∗−1/2xt,i∗−1/2] + κi∗+1/2Tx
(σ2) − κi∗−1/2Tx̄

(σ2),

where E l,(σ1)
i∗+1/2 = (cT (σ1))i∗+1/2 + (cs − cl)Ti∗ + λ and Es,(σ1)

i∗−1/2 = (cT (σ1))i∗−1/2. This is the internal
energy balance equation for the cell [xi∗−1/2, xi∗+1/2]. One can readily write out the energy balance
for any interval [xi−1/2, xi+1/2], 1 ≤ i ≤ N − 1, without singling out the case of i = i∗,

0.5[Ei−0h
x
i−1/2 + Ei+0h

x
i+1/2]t = [E (σ1)

i+1/2xt,i+1/2 − E (σ1)

i−1/2xt,i−1/2] + κi+1/2T
(σ2)
x − κi−1/2T

(σ2)
x̄ . (38)

We have Ei−0 = Ei+0 inside each zone and Ei−0 = Es
i∗ and Ei+0 = E l

i∗ on the interface. Since the
heat flux at the points x0 and xN is zero, in the cells adjacent to the boundary, we have

0.5[E0h
x
1/2]t = E (σ1)

1/2 xt,1/2 + κi+1/2T
(σ2)
x , 0.5[ENhx

N−1/2]t = −E (σ1)

N−1/2xt,N−1/2 − κN−1/2T
(σ2)
x̄ . (39)

The internal energy of this system is computed by the formula

E = E0h
x
1/2 +

N−1∑

i=1

[Ei−0h
x
i−1/2 + Ei+0h

x
i+1/2] + ENhx

N−1/2.

By summing relations (38) and (39) over all i, we obtain Et = 0. The approximation to the original
differential problem by the finite difference relations (38) and (39) ensures the conservation law for
the internal energy in a discrete medium. The proof of Assertion 3 is complete.

The summation of Eq. (35) over all grid points justifies the mass conservation law. Here, just
as above, the approximation to the conditions on the interface and the domain boundaries is
coordinated with the approximation at the interior nodes.

Obviously, the internal energy and mass balance holds if equivalent nondivergence finite differ-
ence schemes are used instead of divergence schemes.
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5. RESULTS OF COMPUTATIONS

Let us illustrate the properties of the constructed finite difference schemes by an example deal-
ing with the problem on the crystallization of a binary compound in isothermal conditions from
a supersaturated solution [22, p. 30].

Consider a binary composition whose phase diagram has the form

C l(T ) = γ(T − T ∗) + C, Cs(T ) = C, γ > 0. (40)

At the initial time, at temperature T = T0, the solid phase Cs(T0) = C of the composition is put in
contact with a solution supersaturated at that temperature. The composition of the liquid phase
is Cbegin = C l(T0 + δT ) > C l(T0), δT > 0, its length is ll0, the length of the solid phase is ls0, and the
phase interface is at the point ξ(0) = 0. We assume that the system is in isothermal conditions,
the heat absorption on the crystallization front can be neglected, and the solute does not enter the
liquid phase from the outside. The crystallization process, which starts as a result of contact of
the solid phase with the supersaturated liquid, continues until the composition of the entire liquid
phase becomes homogeneous and equal to C l(T0). By virtue of the mass conservation law, at the
time of growth termination, the width of the grown crystal should be equal to

Δ = ll0(C
l
begin − C l(T0))/l(C − C l(T0)).

Under these conditions, the crystallization process is described by an equation for the concentration
with conditions (40) and (5) on the phase boundary and with condition (7) on the domain boundary
at the points x = −ls0 and x = ll0.

We take ll0 = 1, ls0 = 0.1, T0 = 1700K, and δT = 10 and set the composition of the solid phase
to unity, C = 1; the phase diagram parameters correspond to the data for CuFe [26], γ = 0.06
and T ∗ = 1713.(3)K. The solute concentration in the saturated solution at temperature T0 is
C l(T0) = 0.2, the initial composition of the liquid phase is Cbegin = 0.8, Dl = 5 × 10−5, and the
time scale is tD = (ll0)2/Dl. For the chosen parameter values, we have Δ = 0.75.

We solve the isothermal crystallization problem on a uniform fixed grid ωy × ωt. The number
of nodes is i∗ = 10 in the solid phase and 500 in the liquid phase. We carry out the computations
with the use of two nondivergence finite difference schemes obtained from the family (29).

One of them corresponds to the parameter values σ3 = 1 and σ5 = 0 (scheme I). In this case,
we have QC

i = 0. Scheme I is algebraically equivalent to a divergence scheme in the family (25)
and hence guarantees that the mass conservation law holds.

Scheme II is obtained from the family (29) for the parameter values σ3 = σ5 = 1, the corre-
sponding value of QC

i is −τ [hy
i−1/2ϕtỹCt,i−0 + hy

i+1/2 × 2ϕtỹCt,i+0]/2, and QC
i = 0 for i < i∗, because

Ct,i±0 = 0 in the solid phase. In the liquid and on the interface, QC
i is nonzero; however, it was

assumed in the computations that QC
i ≡ 0. This essentially implies that mass loss at the rate QC

i

occurs in the liquid phase on each grid interval.

Fig. 2. The position of the crystallization front: (a) computations by scheme I; (b) computations by
scheme II.
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Results of computations by the scheme II

The increment τ 0.25 0.05 0.01 0.001 0.0001 0.00001

The layer width 0.534486 0.657992 0.723689 0.746612 0.749602 0.749957

Systems of nonlinear grid equations corresponding to schemes I and II are solved by the Newton
method for the vector of unknowns whose components are the concentration at all grid nodes and
the interface motion velocity. The linear equations on each iteration of the Newton method are
solved by a special modification of the Thomas method [27].

Figure 2 (a) presents the dependence of the position of the crystallization front on time. In the
figure, one can see that scheme I provides an almost exact value of the width of the grown solid
phase even in the case of large time increments. Obviously, the time of exit of the grid solution
to the stationary mode depends on the increment τ . Computations with a very fine time incre-
ment (τ = 10−5tD) give the time tst = 0.575tD of exit to the stationary mode. If τ = 0.25tD ,
then, by time tst, the width d(t) of the grown crystal is 99%Δ, d(tst) = 0.749925. The computa-
tions with increment τ = 0.05 also provide a good description of the initial stage of the process,
d(tst) = 99.999%Δ.

In the computations by scheme II with increment τ = 0.25, the width of the grown layer on
the stationary mode t = 2.5tD is 71.25%Δ. Therefore, the system has lost approximately 21% of the
substance originally soluted in the liquid phase. The mass loss due to the presence of fictitious drains
in the discrete model decreases with the time increment. Figure 2 (b) illustrates this assertion. The
table presents the values of the layer width obtained in computations by scheme II for various τ .
These data show that the accuracy provided by scheme I for τ0 = 0.05 is provided by scheme II for
the time increment τ0/5000.

The results of computations visually illustrate the mechanism of action of the fictitious sources/
drains appearing in the discrete medium owing to the failure of the principle of conservation.
The considered process of crystallization of a binary solution is a relatively simple example of
a thermodiffusion Stefan problem in which one can directly check how the mass conservation law is
satisfied and adjust the time increment in the case of nonconservative systems. In multicomponent
systems with complicated phase diagram where the process occurs in nonisothermal conditions,
a failure of the energy and mass balance may result in a difficult-to-control shift of the phase
equilibrium point along the phase diagram surface and to unpredictable results.

Therefore, for the thermodiffusion Stefan problem, we have constructed a family of conserva-
tive finite difference schemes that inherit the main properties of the original differential problem.
We have singled out a class of finite difference schemes for which the front rectification method and
the moving grid method are algebraically equivalent. In the present paper, we give the results of
computations illustrating the action of fictitious sources appearing in the computations when using
nonconservative schemes.
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